Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78.246
Filter
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 636-644, jul. 2024. graf, tab
Article in English | LILACS | ID: biblio-1538072

ABSTRACT

Thechemical composition, antioxidant and antimicrobial activities of the essential oil from aerial parts (leaves and flowers) of Chuquiraga arcuataHarling grown in the Ecuadorian Andes were studied. One hundred and twenty-six compounds were identified in the essential oil. Monoterpene hydrocarbons (45.8%) and oxygenated monoterpenes (44.1%) had the major percentages. The most abundant compounds were camphor (21.6%), myrcene (19.5%), and 1,8-cineole (13.4%). Antioxidant activity was examined using DPPH, ABTS,and FRAP assays. The essential oil had a moderate scavenging effect and reduction of ferric ion capacity through FRAP assay. Antimicrobial activity of the essential oil was observed against four pathogenic bacteria and a fungus. The essential oil exhibited activity against all microorganism strains under test, particularly against Candida albicansand Staphylococcus aureuswith MICs of 2.43-12.10 µg/mL.


Se estudió la composición química, actividades antioxidantes y antimicrobianas del aceite esencial procedente de las partes aérea (hojas y flores) de Chuquiraga arcuataHarling cultivadas en los Andes ecuatorianos. Se identificaron 126 compuestos en el aceite esencial. Los hidrocarburos monoterpénicos (45,8%) y los monoterpenos oxigenados (44,1%) tuvieron el mayor porcentaje. Los compuestos más abundantes fueron alcanfor (21,6%), mirceno (19,5%) y 1,8-cineol (13,4%). La actividadantioxidante se examinó mediante ensayos DPPH, ABTS y FRAP. El aceite esencial tuvo un efecto eliminador moderado y una reducción de la capacidad de iones férricos mediante el ensayo FRAP. Se observó actividad antimicrobiana del aceite esencial contra cuatro bacterias y un hongo patógenos. El aceite esencial mostró actividad contra todas las cepas de microorganismos bajo prueba, particularmente contra Candida albicansy Staphylococcus aureuscon CMI de 2,43-12,10 µg/mL.


Subject(s)
Oils, Volatile/chemistry , Plant Extracts/chemistry , Antioxidants/chemistry , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Flowers/chemistry , Ecuador , Antioxidants/pharmacology
2.
BMC Complement Med Ther ; 24(1): 149, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581015

ABSTRACT

BACKGROUND: Diabetes Mellitus is associated with disturbances in male reproductive function and fertility. Studies have shown that oxidative stress with the subsequent inflammation and apoptosis cause these complications in diabetes. Garlic (G) (Allium sativum L) and Citrullus colocynthis (L.) Schrad (C) both have antidiabetic and antioxidant properties. Recently, we demonstrated their synergistic effects in alleviating reproductive complications when administered concomitantly. However, as even medicinal plants in long term usage may lead to some unwanted side effects of their own, we examined whether with half the original doses of these two medicinal plants we could achieve the desired results. METHODS: Thirty-five male Wistar rats were divided into five groups (n = 7/group): Control, Diabetic, Diabetic + G (0.5 ml/100 g BW), Diabetic + C (5 mg/kg BW) and Diabetic + GC (0.5 ml/100 g BW of garlic and 5 mg/kg BW of C. colocynthis) groups. The experimental period was 30 days. RESULTS: Oxidative stress, advanced glycation end products (AGEs), immunoexpression of caspase-3, and expression of mRNAs for receptor for advanced glycation end products (RAGE), NADPH oxidase-4 (NOX-4) and nuclear factor kappa B increased in testis of diabetic rats. Treatment with garlic and C. colocynthis alone showed some beneficial effects, but in the combination form the effectiveness was more profound. CONCLUSIONS: We conclude that the combination therapy of diabetic rats with lower doses is still as efficient as higher doses; therefore, the way forward for reducing complications in long term consumption.


Subject(s)
Citrullus colocynthis , Diabetes Mellitus, Experimental , Garlic , Animals , Male , Rats , Antioxidants/pharmacology , Antioxidants/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Garlic/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats, Wistar , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction
3.
J Evid Based Integr Med ; 29: 2515690X241244845, 2024.
Article in English | MEDLINE | ID: mdl-38613379

ABSTRACT

Garcinia dulcis (GD) extract possesses anti-hypertensive property that are poorly characterized. This study aimed to investigate an anti-inflammatory effect of GD flower extract in the 2-kidney-1-clip (2K1C) hypertensive compared to sham operative (SO) rat. Male Wistar rats were divided into 2 groups; the 2K1C group in which a silver clip was placed around renal artery to induce hypertension, and the SO normotensive group. Four weeks later, each group of rats were further divided into 2 subgroups, each subgroup was orally gavaged of either corn oil (vehicle) or 50 mg/kg BW GD extract daily for 4 weeks. The malondialdehyde (MDA) levels in serum, liver, and kidney were determined. Hematoxylin and eosin staining was carried out for histological examination, Periodic acid - Schiff staining for glomerular injury, Masson's trichrome staining for renal fibrosis, and immunohistochemistry for either tumor necrosis factor alpha (TNF-α) or endothelial nitric oxide synthase (eNOS) investigation. Taken together, our results demonstrated that GD flower extract decreased the MDA level in both serum and liver and kidney tissue and suppressed the expression of TNF-α in both liver and kidney of 2K1C hypertensive rats. Mesangial cell proliferation, expansion of mesangial matrix, widening Bowman's capsule space, congestion of glomerular capillary and vessel, cloudy swelling of renal tubular epithelial cell, and renal fibrosis were observed in the kidneys of 2K1C rats. Therefore, we concluded that GD flower extract can alleviate liver and kidney inflammation in which partially attenuates the glomerular injury in the 2K1C rat.


Subject(s)
Hypertension , Tumor Necrosis Factor-alpha , Male , Rats , Animals , Tumor Necrosis Factor-alpha/genetics , Rats, Wistar , Kidney , Liver , Inflammation/drug therapy , Surgical Instruments , Fibrosis , Plant Extracts/pharmacology
4.
Sci Rep ; 14(1): 8678, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622206

ABSTRACT

This study emphasizes the phytochemical study of some locally available botanicals against maize weevils. Nine plant parts were collected from six plant species. The test plant powder (200 g) was suspended sequentially in 600 ml of petroleum ether, chloroform, acetone, methanol, and distilled water for 72 h with frequent agitation. Different concentrations of the crude extracts were applied to maize seeds at rates of 10 ml, 15 ml and 20 ml per 100 g. All treatments with different extracts at different rates of application showed significant differences (p < 0.05) in the cumulative mean percentage mortality of the maize weevil. The seed extract of Maesa lanceolata and Croton macrostachyus and the leaf extract of Clausena anisata showed cumulative percent mortality ranged 95.32-98.02% in 28 days after treatment application. There was no significant difference (p > 0.05) among all treatments for the prevention of F1 progeny emergence. In all extracts, Clausena anisata showed 100% inhibition of F1 progeny emergence. All treatments significantly reduced seed weight loss and damage. The treated maize seeds were germinated with an acceptable germination quality. In conclusion, an increased dosage of the extract resulted in significant mortality in maize weevils. The seed extracts of Maesa lanceolata and Croton macrostachyus and Clausena anisata leaf extract were observed to be the most promising botanical in protecting stored maize against maize weevil.


Subject(s)
Coleoptera , Insecticides , Plants, Medicinal , Weevils , Animals , Weevils/physiology , Insecticides/pharmacology , Phytochemicals/pharmacology , Plant Extracts/pharmacology
5.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38612465

ABSTRACT

Ulcerative colitis (UC) is a relapsing and reoccurring inflammatory bowel disease. The treatment effect of Alhagi maurorum and stem cell extracts on UC remains unclear. The aim of the present study was to investigate the protective role of Alhagi maurorum combined with stem cell extract on the intestinal mucosal barrier in an intestinal inflammation mouse model. Sixty mice were randomly divided into a control group, model group, Alhagi group, MSC group, and MSC/Alhagi group. MSC and Alhagi extract were found to reduce the disease activity index (DAI) scores in mice with colitis, alleviate weight loss, improve intestinal inflammation in mice (p < 0.05), preserve the integrity of the ileal wall and increase the number of goblet cells and mucin in colon tissues. Little inflammatory cell infiltration was observed in the Alhagi, MSC, or MSC/Alhagi groups, and the degree of inflammation was significantly alleviated compared with that in the model group. The distribution of PCNA and TNF-alpha in the colonic tissues of the model group was more disperse than that in the normal group (p < 0.05), and the fluorescence intensity was lower. After MSC/Alhagi intervention, PCNA and TNF-alpha were distributed along the cellular membrane in the MSC/Alhagi group (p < 0.05). Compared with that in the normal control group, the intensity was slightly reduced, but it was still stronger than that in the model group. In conclusion, MSC/Alhagi can alleviate inflammatory reactions in mouse colonic tissue, possibly by strengthening the protective effect of the intestinal mucosal barrier.


Subject(s)
Colitis, Ulcerative , Fabaceae , Mesenchymal Stem Cells , Animals , Mice , Colitis, Ulcerative/drug therapy , Stem Cell Factor , Proliferating Cell Nuclear Antigen , Tumor Necrosis Factor-alpha , Inflammation , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
6.
Int J Mol Sci ; 25(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612532

ABSTRACT

Cherry stems, prized in traditional medicine for their potent antioxidant and anti-inflammatory properties, derive their efficacy from abundant polyphenols and anthocyanins. This makes them an ideal option for addressing skin aging and diseases. This study aimed to assess the antioxidant and anti-inflammatory effects of cherry stem extract for potential skincare use. To this end, the extract was first comprehensively characterized by HPLC-ESI-qTOF-MS. The extract's total phenolic content (TPC), antioxidant capacity, radical scavenging efficiency, and its ability to inhibit enzymes related to skin aging were determined. A total of 146 compounds were annotated in the cherry stem extract. The extract effectively fought against NO· and HOCl radicals with IC50 values of 2.32 and 5.4 mg/L. Additionally, it inhibited HYALase, collagenase, and XOD enzymes with IC50 values of 7.39, 111.92, and 10 mg/L, respectively. Based on the promising results that were obtained, the extract was subsequently gently integrated into a cosmetic gel at different concentrations and subjected to further stability evaluations. The accelerated stability was assessed through temperature ramping, heating-cooling cycles, and centrifugation, while the long-term stability was evaluated by storing the formulations under light and dark conditions for three months. The gel formulation enriched with cherry stem extract exhibited good stability and compatibility for topical application. Cherry stem extract may be a valuable ingredient for creating beneficial skincare cosmeceuticals.


Subject(s)
Anthocyanins , Cosmetics , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , Plant Extracts/pharmacology
7.
Int J Mol Sci ; 25(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612554

ABSTRACT

Root extracts of Ancistrocladus tectorius (AT), a shrub native to China, have been shown to have antiviral and antitumor activities, but the anti-obesity effects of AT aerial parts, mainly the leaves and stems, have not been investigated. This study is the first to investigate the anti-obesity effects and molecular mechanism of AT 70% ethanol extract in 3T3-L1 adipocytes and high-fat diet (HFD)-fed C57BL/6J mice. Treatment with AT extract inhibited lipid accumulation in 3T3-L1 cells and decreased the expression of adipogenesis-related genes. AT extract also upregulated the mRNA expression of genes related to mitochondrial dynamics in 3T3-L1 adipocytes. AT administration for 12 weeks reduced body weight and organ weights, including liver, pancreas, and white and brown adipose tissue, and improved plasma profiles such as glucose, insulin, homeostasis model assessment of insulin resistance, triglyceride (TG), and total cholesterol in HFD-fed mice. AT extract reduced HFD-induced hepatic steatosis with levels of liver TG and lipogenesis-related genes. AT extract upregulated thermogenesis-related genes such as Cidea, Pgc1α, Ucp1, Prdm16, Adrb1, and Adrb3 and mitochondrial dynamics-related genes such as Mff, Opa1, and Mfn2 in brown adipose tissue (BAT). Therefore, AT extract effectively reduced obesity by promoting thermogenesis and the mitochondrial dynamics of BAT in HFD-fed mice.


Subject(s)
Caryophyllales , Diet, High-Fat , Animals , Mice , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Mitochondrial Dynamics , Insulin , Plant Extracts/pharmacology
8.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612814

ABSTRACT

Ag nanoparticles (AgNPs) were biosynthesized using sage (Salvia officinalis L.) extract. The obtained nanoparticles were supported on SBA-15 mesoporous silica (S), before and after immobilization of 10% TiO2 (Degussa-P25, STp; commercial rutile, STr; and silica synthesized from Ti butoxide, STb). The formation of AgNPs was confirmed by X-ray diffraction. The plasmon resonance effect, evidenced by UV-Vis spectra, was preserved after immobilization only for the sample supported on STb. The immobilization and dispersion properties of AgNPs on supports were evidenced by TEM microscopy, energy-dispersive X-rays, dynamic light scattering, photoluminescence and FT-IR spectroscopy. The antioxidant activity of the supported samples significantly exceeded that of the sage extract or AgNPs. Antimicrobial tests were carried out, in conditions of darkness and white light, on Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans. Higher antimicrobial activity was evident for SAg and STbAg samples. White light increased antibacterial activity in the case of Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa). In the first case, antibacterial activity increased for both supported and unsupported AgNPs, while in the second one, the activity increased only for SAg and STbAg samples. The proposed antibacterial mechanism shows the effect of AgNPs and Ag+ ions on bacteria in dark and light conditions.


Subject(s)
Blood Group Antigens , Metal Nanoparticles , Antioxidants/pharmacology , Escherichia coli , Spectroscopy, Fourier Transform Infrared , Silver/pharmacology , Antigens, Fungal , Anti-Bacterial Agents/pharmacology , O Antigens , Silicon Dioxide , Plant Extracts/pharmacology
9.
Nutrients ; 16(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612999

ABSTRACT

Atractylodes macrocephala Koidz (AMK) is a traditional herbal medicine used for thousands of years in East Asia to improve a variety of illnesses and conditions, including cancers. This study explored the effect of AMK extract on apoptosis and tumor-grafted mice using AGS human gastric adenocarcinoma cells. We investigated the compounds, target genes, and associated diseases of AMK using the Traditional Chinese Medical Systems Pharmacy (TCMSP) database platform. Cell viability assay, cell cycle and mitochondrial depolarization analysis, caspase activity assay, reactive oxygen species (ROS) assay, and wound healing and spheroid formation assay were used to investigate the anti-cancer effects of AMK extract on AGS cells. Also, in vivo studies were conducted using subcutaneous xenografts. AMK extract reduced the viability of AGS cells and increased the sub-G1 cell fraction and the mitochondrial membrane potential. Also, AMK extract increased the production of ROS. AMK extract induced the increased caspase activities and modulated the mitogen-activated protein kinases (MAPK). In addition, AMK extract effectively inhibited AGS cell migration and led to a notable reduction in the growth of AGS spheroids. Moreover, AMK extract hindered the growth of AGS xenograft tumors in NSG mice. Our results suggest that AMK has anti-cancer effects by promoting cell cycle arrest and inhibiting the proliferation of AGS cancer cells and a xenograft model through apoptosis. This study could provide a novel approach to treat gastric cancer.


Subject(s)
Atractylodes , Stomach Neoplasms , Humans , Animals , Mice , Stomach Neoplasms/drug therapy , Reactive Oxygen Species , Caspases , Plant Extracts/pharmacology
10.
Nutrients ; 16(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38613068

ABSTRACT

Osteoarthritis (OA) is a degenerative bone disease characterized by inflammation as a primary pathology and currently lacks therapeutic interventions to impede its progression. Erigeron breviscapus (Vant.) Hand.-Mazz. (EB) is an east Asian herbal medicine with a long history of use and a wide range of confirmed efficacy against cardiovascular and central nervous system diseases. The purpose of this study is to evaluate whether EB is worthy of further investigation as a treatment for OA based on anti-inflammatory activity. This study aims to assess the potential of EB as a treatment for OA, focusing on its anti-inflammatory properties. Analgesic effects, functional improvements, and inhibition of cartilage destruction induced by EB were evaluated in acetic acid-induced peripheral pain mice and monosodium iodoacetate-induced OA rat models. Additionally, the anti-inflammatory effect of EB was assessed in serum and cartilage tissue in vivo, as well as in lipopolysaccharide-induced RAW 264.7 cells. EB demonstrated a significant alleviation of pain, functional impairment, and cartilage degradation in OA along with a notable inhibition of pro-inflammatory cytokines, including interleukin-1ß, interleukin-6, matrix metalloproteinases 13, and nitric oxide synthase 2, both in vitro and in vivo, in a dose-dependent manner compared to the active control. Accordingly, EB merits further exploration as a potential disease-modifying drug for OA, capable of mitigating the multifaceted pathology of osteoarthritis through its anti-inflammatory properties. Nonetheless, additional validation through a broader experimental design is essential to substantiate the findings of this study.


Subject(s)
Erigeron , Osteoarthritis , Animals , Mice , Rats , Research Design , Anti-Inflammatory Agents, Non-Steroidal , Osteoarthritis/chemically induced , Osteoarthritis/drug therapy , Pain/drug therapy , Plant Extracts/pharmacology
11.
Sci Rep ; 14(1): 8488, 2024 04 11.
Article in English | MEDLINE | ID: mdl-38605145

ABSTRACT

In the last few decades, researchers have thoroughly studied the use of plants in Palestine, one of them is Cyclamen persicum Mill. (C. persicum). Cyclamen persicum has been historically cultivated since the 1700s due to its tuber. The tuber is known to stimulate the nasal receptors, thus triggering the sensory neurons. Cyclamen persicum has anti-inflammatory effects, reduces cholesterol levels, treats diabetes, and inhibits tumor growth. In this respect, in-vitro examination of antibacterial and anticancer activities and antioxidative potency of C. persicum ethanolic extract were evaluated. The antioxidative potency of the extracted plant material was determined spectrophotometrically using the DPPH free radical scavenging method and the HPLC-PDA method to evaluate its total phenolic content (TPC) and total flavonoid content (TFC). The experimental results revealed weak antibacterial activity of C. persicum extract against both gram negative (E. coli) and gram positive (Streptococcus aureus and S. aureus) bacterial strains, with the zones of inhibition found to be less than 8 mm. On the other hand, powerful activity against MCF7 breast cancer as well as HT29 colon cancer cell lines was obtained. The findings also revealed potent inhibition of free radicals and the presence of maximal levels of natural products such as phenolic compounds and flavonoids, which supportits biological activities and powerful ability to scavenge free radicals. HPLC results showed the presence of numerous flavonoid and phenolic compounds such as rutin, chlorogenic acid, kaempferol, trans-cinnamic acid, quercetin, sinapic acid, and p-coumaric acid.


Subject(s)
Breast Neoplasms , Cyclamen , Humans , Female , Antioxidants/pharmacology , Antioxidants/chemistry , Cyclamen/chemistry , Staphylococcus aureus , Escherichia coli , Plant Extracts/pharmacology , Plant Extracts/chemistry , Flavonoids/pharmacology , Phenols/pharmacology , Anti-Bacterial Agents/pharmacology , Free Radicals
12.
Food Res Int ; 184: 114251, 2024 May.
Article in English | MEDLINE | ID: mdl-38609229

ABSTRACT

Persimmon (Diospyros kaki L. cv. Mopan.), an important commercial crop belonging to the genus of Diospyros in the Ebenaceae family, is rich in bioactive phenolic compounds. In this study, the phenolic compounds from fruits, leaves, and calyces of persimmon were qualitatively and quantitatively determined by UPLC-Q-Exactive-Orbitrap/MS and UPLC-QqQ-MS/MS, respectively. Furthermore, the role of phenolic extract from different parts of persimmon on neuroprotective activity in vitro, through against oxidative stress and anti-neuroinflammation effect was firstly evaluated. The results showed that 75 phenolic compounds, and 3 other kinds of compounds were identified, among which 44 of phenolic compounds were quantified from different parts of persimmon. It is the first time that epicatechin-epigallocatechin, catechin-epigallocatechin, catechin-epigallocatechin (A-type), and glycoside derivatives of laricitrin were identified in persimmon extract. The dominated phenolic compounds in three parts of persimmon were significantly different. All phenolic extracts from each part of persimmon showed strong neuroprotective activities against H2O2-induced oxidative stress in PC-12 cells and LPS-induced BV2 cells. The fruit extract presented the strongest activity, followed by calyx and leaf extract. The systematic knowledge on the phytochemical composition along with activity evaluation of different parts of persimmon could contribute to their targeted selection and development.


Subject(s)
Catechin , Diospyros , Neurodegenerative Diseases , Chromatography, High Pressure Liquid , Hydrogen Peroxide , Tandem Mass Spectrometry , Plant Extracts/pharmacology
13.
J Toxicol Environ Health A ; 87(11): 457-470, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38576186

ABSTRACT

Glutamate is one of the predominant excitatory neurotransmitters released from the central nervous system; however, at high concentrations, this substance may induce excitotoxicity. This phenomenon is involved in numerous neuropathologies. At present, clinically available pharmacotherapeutic agents to counteract glutamatergic excitotoxicity are not completely effective; therefore, research to develop novel compounds is necessary. In this study, the main objective was to determine the pharmacotherapeutic potential of the hydroalcoholic extract of Psidium guajava (PG) in a model of oxidative stress-induced by exposure to glutamate utilizing Danio rerio larvae (zebrafish) as a model. Data showed that treatment with glutamate produced a significant increase in oxidative stress, chromatin damage, apoptosis, and locomotor dysfunction. All these effects were attenuated by pre-treatment with the classical antioxidant N-acetylcysteine (NAC). Treatment with PG inhibited oxidative stress responsible for cellular damage induced by glutamate. However, exposure to PG failed to prevent glutamate-initiated locomotor damage. Our findings suggest that under conditions of oxidative stress, PG can be considered as a promising candidate for treatment of glutamatergic excitotoxicity and consequent neurodegenerative diseases.


Subject(s)
Psidium , Zebrafish , Animals , Glutamates/toxicity , Oxidative Stress , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Leaves
14.
Zhongguo Zhong Yao Za Zhi ; 49(4): 968-980, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621904

ABSTRACT

This study aims to characterize and identify the chemical constituents in 11 parts of Forsythia suspensa by using ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry(UPLC-Q-TOF-MS) combined with a self-established chemical constituent database, including leaves, flowers, fruits, green F. suspensa, old F. suspensa, and seeds. The quality attributes and differences of different parts of F. suspensa were evaluated by principal component analysis, partial least square discriminant analysis, and other stoichiometric methods. A total of 79 compounds were identified, including 13 phenylethanol glycosides, 10 lignans, 12 flavonoids, 10 organic acids, 14 terpenoids, and 20 other types of compounds. Among them, 34 compounds were the main variables of difference between the different parts of F. suspensa, and the content of each component was relatively higher in the leaves and green F. suspensa. The LPS-induced inflammation model of RAW264.7 cells was applied to study the anti-inflammatory activity of the extracts of the different parts of F. suspensa and the main constituents. The results show that the extracts of green F. suspensa, flower, twig, and stem exhibited anti-inflammatory activity, and the constituents such as forsythoside A, phyllyrin, phillygenin, and(+)-pinoresinol-ß-D-glucopyranoside could significantly inhibit anti-inflammatory activity released by NO. The chemical constituent in different parts of F. suspensa is analyzed comprehensively, and the anti-inflammatory activity is evaluated in this study, which provides a reference for the development and comprehensive utilization of F. suspensa resources.


Subject(s)
Forsythia , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Forsythia/chemistry , Chromatography, High Pressure Liquid , Flavonoids , Anti-Inflammatory Agents/pharmacology
15.
Onderstepoort J Vet Res ; 91(1): e1-e6, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38572889

ABSTRACT

Global aflatoxin contamination of agricultural commodities is of the most concern in food safety and quality. This study investigated the hepatoprotective effect of 80% methanolic leaf extract of Annona senegalensis against aflatoxin B1 (AFB1)-induced toxicity in rats. A. senegalensis has shown to inhibit genotoxicity of aflatoxin B1 in vitro. The rats were divided into six groups including untreated control, aflatoxin B1 only (negative control); curcumin (positive control; 10 mg/kg); and three groups receiving different doses (100 mg/kg, 200 mg/kg, and 300 mg/kg) of A. senegalensis extract. The rats received treatment (with the exception of untreated group) for 7 days prior to intoxication with aflatoxin B1. Serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, and creatinine were measured. Hepatic tissues were analysed for histological alterations. Administration of A. senegalensis extract demonstrated hepatoprotective effects against aflatoxin B1-induced toxicity in vivo by significantly reducing the level of serum aspartate aminotransferase and alanine aminotransferase and regenerating the hepatocytes. No significant changes were observed in the levels of alkaline phosphatase, lactate dehydrogenase, and creatinine for the AFB1 intoxicated group, curcumin+AFB1 and Annona senegalensis leaf extract (ASLE)+AFB1 (100 mg/kg, 200 mg/kg, and 300 mg/kg body weight [b.w.]) treated groups. Annona senegalensis is a good candidate for hepatoprotective agents and thus its use in traditional medicine may at least in part be justified.Contribution: The plant extract investigated in this study can be used in animal health to protect the organism from toxicity caused by mycotoxins.


Subject(s)
Annona , Curcumin , Rats , Animals , Aflatoxin B1/toxicity , Curcumin/pharmacology , Alanine Transaminase/pharmacology , Alkaline Phosphatase/pharmacology , Creatinine/pharmacology , Liver , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Aspartate Aminotransferases/pharmacology , Lactate Dehydrogenases
16.
Med Arch ; 78(2): 117-121, 2024.
Article in English | MEDLINE | ID: mdl-38566865

ABSTRACT

Background: Prostate cancer remains a significant global health concern, necessitating the exploration of novel therapeutic avenues to enhance treatment efficacy and mitigate adverse effects. Objective This study delves into the potential anticancer properties of Pasak Bumi (Eurycoma longifolia Jack) root extract, a traditional Southeast Asian medicinal plant, against prostate cancer. Methods: The research employs a multifaceted approach, encompassing molecular and cellular analyses to unravel the intricate mechanisms underlying Pasak Bumi's effects on prostate cancer cells. Primary focus is given to the PTEN/P13k/Akt pathway, a critical regulator of cell survival and apoptosis. Various concentrations of Pasak Bumi root extract are applied to prostate cancer cell lines, and the impact on apoptosis, cell proliferation, and key molecular targets is assessed. Results: Preliminary findings reveal that Pasak Bumi root extract induces apoptosis in prostate cancer cells, evidenced by downstream molecular events associated with programmed cell death. The extract demonstrates concentration-dependent effects, with higher concentrations exhibiting more pronounced anticancer activity. Moreover, Pasak Bumi root extract appears to modulate the PTEN/P13k/Akt pathway, providing a potential mechanistic link to its anticancer effects. Discussion: The study's significance lies in its contribution to the evolving landscape of natural compounds as anticancer agents, particularly in the context of prostate cancer. Pasak Bumi's traditional use as a medicinal plant, coupled with emerging scientific evidence, underscores its potential translational value. The observed modulation of the PTEN/P13k/Akt pathway aligns with the current understanding of prostate cancer pathogenesis, offering a plausible explanation for Pasak Bumi's anticancer effects. Conclusion: This research sheds light on the promising anticancer potential of Pasak Bumi root extract against prostate cancer. Further exploration of its molecular interactions, synergy with conventional therapies, and efficacy at different stages of cancer progression is warranted. The findings present Pasak Bumi as a nature-inspired candidate for prostate cancer treatment, warranting continued investigation into its therapeutic applications. As the scientific community endeavors to enhance cancer treatment modalities, Pasak Bumi emerges as a captivating subject in the pursuit of effective and minimally invasive prostate cancer therapies.


Subject(s)
Eurycoma , Prostatic Neoplasms , Male , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Proto-Oncogene Proteins c-akt , Prostatic Neoplasms/drug therapy , Apoptosis
17.
Mymensingh Med J ; 33(2): 350-355, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38557509

ABSTRACT

Evaluation of the in vitro antibacterial activity of Methanolic extracts isolated from Black pepper seeds (Piper nigrum L.) against two infection causing pathogens, Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Between July 2022 and June 2023, this experimental study was conducted at the Mymensingh Medical College's Department of Pharmacology and Therapeutics in conjunction with the Department of Microbiology. Using the disc diffusion and broth dilution methods, the antibacterial activity of methanolic extract of black pepper seeds (MBPE) was evaluated at various doses. The solvents Methanol and 10.0% Di Methyl Sulfoxide (DMSO) were used to make the extract. Using the broth dilution procedure, the conventional antibiotic Ciprofloxacin was utilized and the outcome was contrasted with that of Methanol extracts. Methanolic extract of black pepper seeds (MBPE) at seven distinct concentrations (100, 80, 60, 40, 20, 10 and 5 mg/ml) were utilized, then later in chosen concentrations as needed to confirm the extracts' more precise margin of antimicrobial sensitivity. At 80 mg/ml and above doses of the MBPE, it had an inhibitory impact against the aforementioned microorganisms. For Staphylococcus aureus and Escherichia coli the MIC were 60 and 75 mg/ml in MBPE respectively. As of the MIC of Ciprofloxacin was 1µg/ml against Staphylococcus aureus and Escherichia coli. In comparison to MICs of MBPE for the test organisms, the MIC of Ciprofloxacin was the lowest. This study clearly shows that Staphylococcus aureus and Escherichia coli are sensitive to the methanolic extract of black pepper seeds' antibacterial properties.


Subject(s)
Piper nigrum , Staphylococcus aureus , Humans , Methanol , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Ciprofloxacin , Seeds , Escherichia coli
18.
Int J Nanomedicine ; 19: 3045-3070, 2024.
Article in English | MEDLINE | ID: mdl-38559447

ABSTRACT

Background: Diabetes Mellitus is a multisystem chronic pandemic, wound inflammation, and healing are still major issues for diabetic patients who may suffer from ulcers, gangrene, and other wounds from uncontrolled chronic hyperglycemia. Marshmallows or Althaea officinalis (A.O.) contain bioactive compounds such as flavonoids and phenolics that support wound healing via antioxidant, anti-inflammatory, and antibacterial properties. Our study aimed to develop a combination of eco-friendly formulations of green synthesis of ZnO-NPs by Althaea officinalis extract and further incorporate them into 2% chitosan (CS) gel. Method and Results: First, develop eco-friendly green Zinc Oxide Nanoparticles (ZnO-NPs) and incorporate them into a 2% chitosan (CS) gel. In-vitro study performed by UV-visible spectrum analysis showed a sharp peak at 390 nm, and Energy-dispersive X-ray (EDX) spectrometry showed a peak of zinc and oxygen. Besides, Fourier transforms infrared (FTIR) was used to qualitatively validate biosynthesized ZnO-NPs, and transmission electron microscope (TEM) showed spherical nanoparticles with mean sizes of 76 nm and Zeta potential +30mV. The antibacterial potential of A.O.-ZnO-NPs-Cs was examined by the diffusion agar method against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Based on the zone of inhibition and minimal inhibitory indices (MIC). In addition, an in-silico study investigated the binding affinity of A.O. major components to the expected biological targets that may aid wound healing. Althaea Officinalis, A.O-ZnO-NPs group showed reduced downregulation of IL-6, IL-1ß, and TNF-α and increased IL-10 levels compared to the control group signaling pathway expression levels confirming the improved anti-inflammatory effect of the self-assembly method. In-vivo study and histopathological analysis revealed the superiority of the nanoparticles in reducing signs of inflammation and wound incision in rat models. Conclusion: These biocompatible green zinc oxide nanoparticles, by using Althaea Officinalis chitosan gel ensure an excellent new therapeutic approach for quickening diabetic wound healing.


Subject(s)
Althaea , Chitosan , Diabetes Mellitus , Metal Nanoparticles , Zinc Oxide , Humans , Animals , Rats , Zinc Oxide/chemistry , Chitosan/chemistry , Althaea/metabolism , Interleukin-6 , Tumor Necrosis Factor-alpha , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Wound Healing , Anti-Inflammatory Agents/pharmacology , Inflammation , Flowers , Microbial Sensitivity Tests , Plant Extracts/pharmacology , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
19.
J Ovarian Res ; 17(1): 76, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589892

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is a complex endocrine disorder in women that necessitates effective and safe treatment alternatives. This study aimed to evaluate the therapeutic efficacy of Vitex negundo seed in a letrozole-induced PCOS rat model. RESULTS: Findings of the present study demonstrated that administration of hydro-ethanolic extract of Vitex negundo (VNE) effectively restored endocrino-metabolic imbalances associated with PCOS, along with correction of antioxidant enzymes level, proinflammatory cytokines, and apoptotic bio-markers. LC-MS analysis confirmed the presence of cinnamic acid, plumbagin and nigundin B as the prominent phytochemicals in VNE. The observed beneficial effects could be attributed to the active compounds in Vitex negundo extract, which exhibited hypoglycemic, hypolipidemic, and catabolic effects on body weight. Additionally, the extract contributed to hormonal balance regulation by modulating the steroidogenic enzymes, specifically by tuning gonadotropins level and correcting the LH:FSH ratio, through the modulation of ERα signalling and downregulation of NR3C4 expression. The antioxidant properties of phytochemicals in Vitex negundo seed were apparent through the correction of SOD and catalase activity. While it's anti-inflammatory and antiapoptotic action were associated with the regulation of mRNA expression of TNF-α, IL-6, BAX, Bcl2. Molecular docking study further indicated the molecular interaction of above mentioned active phytocompounds of VNE with ERα, NR3C4 and with TNFα that plays a critical mechanistic gateway to the regulation of hormone signalling as well as synchronizing the inflammation cascade. Furthermore, the histomorphological improvement of the ovaries supported the ameliorative action of Vitex negundo extract in the letrozole-induced PCOS model. CONCLUSIONS: This study indicates the potential of Vitex negundo seed as a multifaceted therapeutic option for PCOS. VNE offers a holistic strategy for PCOS with antiandrogenic, anti-inflammatory, and antioxidant properties, driven by its major compounds like cinnamic acid, plumbagine, and nigundin B.


Subject(s)
Cinnamates , Polycystic Ovary Syndrome , Vitex , Humans , Rats , Female , Animals , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/drug therapy , Letrozole/therapeutic use , Vitex/chemistry , Estrogen Receptor alpha , Antioxidants/pharmacology , Antioxidants/therapeutic use , Molecular Docking Simulation , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Tumor Necrosis Factor-alpha , Seeds
20.
BMC Vet Res ; 20(1): 133, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570815

ABSTRACT

BACKGROUND: Obesity is a serious disease with an alarmingly high incidence that can lead to other complications in both humans and dogs. Similar to humans, obesity can cause metabolic diseases such as diabetes in dogs. Natural products may be the preferred intervention for metabolic diseases such as obesity. The compound 1-deoxynojirimycin, present in Morus leaves and other sources has antiobesity effects. The possible antiobesity effect of 1-deoxynojirimycin containing Morus alba leaf-based food was studied in healthy companion dogs (n = 46) visiting the veterinary clinic without a history of diseases. Body weight, body condition score (BCS), blood-related parameters, and other vital parameters of the dogs were studied. Whole-transcriptome of blood and gut microbiome analysis was also carried out to investigate the possible mechanisms of action and role of changes in the gut microbiome due to treatment. RESULTS: After 90 days of treatment, a significant antiobesity effect of the treatment food was observed through the reduction of weight, BCS, and blood-related parameters. A whole-transcriptome study revealed differentially expressed target genes important in obesity and diabetes-related pathways such as MLXIPL, CREB3L1, EGR1, ACTA2, SERPINE1, NOTCH3, and CXCL8. Gut microbiome analysis also revealed a significant difference in alpha and beta-diversity parameters in the treatment group. Similarly, the microbiota known for their health-promoting effects such as Lactobacillus ruminis, and Weissella hellenica were abundant (increased) in the treatment group. The predicted functional pathways related to obesity were also differentially abundant between groups. CONCLUSIONS: 1-Deoxynojirimycin-containing treatment food have been shown to significantly improve obesity. The identified genes, pathways, and gut microbiome-related results may be pursued in further studies to develop 1-deoxynojirimycin-based products as candidates against obesity.


Subject(s)
Diabetes Mellitus , Dog Diseases , Gastrointestinal Microbiome , Metabolic Diseases , Morus , Humans , Animals , Dogs , 1-Deoxynojirimycin/pharmacology , Plant Extracts/pharmacology , Obesity/drug therapy , Obesity/veterinary , Diabetes Mellitus/veterinary , Metabolic Diseases/veterinary , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL
...